Laboratório OSPF – Convergência DR & BDROSPF Lab – DR & BDR Convergence

Olá pessoal,

Faltando apenas uma semana para o grande dia, estou praticando bastante minhas habilidades práticas nos temas que senti que precisava de um reforço.

Um destes era como funcionava a convergência do protocolo OSPF em redes multi-acesso e a relação dos Routers IDs com a escolha do DR e do BDR da rede.

O laboratório foi feito para que se possa ver a convergência da rede quando esta sobre uma modificação.

Nota-se que cada segmento multi-acesso possui a eleição de um DR e/ou BDR, logo, para as redes que possuem apenas um dispositivo, esta terá somente um DR e nenhum BDR.

A respeito do Router ID, este é o maior IP numa interface lógica (loopback). Se não existir uma interface lógica, o RID é definido como o maior endereço IP  de uma interface participante no processo de roteamento.

O download pode ser feito abaixo:

Link para o download do Laboratório completo de Convergência OSPF Multi-acesso (DR e BDR).

Segue abaixo uma imagem do laborátório.Laboratório de Convergência OSPF - DR e BDR

Um abração pessoal,

Maurício.

Hello staff,

With only a week for the big day, I’m practicing my very practical skills in areas I felt I needed a backup.

One of these was how the convergence of OSPF protocol in multi-access networks and the IDs of the routers with the choice ofDR and BDR on the network.

The laboratory has been done so you can see the convergence of the network when it on a modification.

Note that each multi-access segment has the election of a DR and / or BDR, so for the networks that have only one device, this will take only a DR and BDR no.

With respect to the Router ID, this is the largest IP interface in a logical (loopback). If there is a logical interface, the RID is defined as the highest IP address of an interface participating in the process of routing.

You can download them below:

Link to download the complete Lab Convergence OSPF Multi-access (DR and BDR).

Below a picture of the laboratory.Laboratório de Convergência OSPF - DR e BDR

A Abrasive staff,

Maurício.

Resumo de Conceitos do EIGRPSummary of EIGRP Concepts

Olá pessoal,

Complementando meus estudos (e o de vocês) sobre a parte conceitual do EIGRP segue abaixo:

Com relação às rotas:

  • Sucessor route: Rota principal para um destino. É apresentada no comando show ip route e no show ip eigrp topology como sucessor route.
  • Feasible Sucessor: Possível rota alternativa para um destino. Apresentada na tabela de topologia e somente passa para a tabela de roteamento quando a sucessor route torna-se inalcançavel ou tem um custo maior que a FS.

Com relação às métricas (custo)

  • Feasible Distance: Distância calculada até um destino. É composta da reported distance + o custo calculado até o destino.
  • Reported Distance (Advertised Distance): Distância anunciada por um roteador vizinho até um destino. Esta métrica sempre será menor que a Feasible distance (pois se for maior está ocorrendo um loop de roteamento).


Segue abaixo a demonstração destes conceitos.

R_Matriz#sh ip eigrp topology
IP-EIGRP Topology Table for AS 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
r - Reply status

P 172.16.1.0/30, 1 successors, FD is 46226176
via Connected, Serial0/0.100
P 172.16.2.0/30, 1 successors, FD is 46226176
via Connected, Serial0/0.200
P 172.16.3.0/30, 1 successors, FD is 46226176
via Connected, Serial0/0.300
P 0.0.0.0/0, 1 successors, FD is 2169856
via Rstatic (2169856/0)
P 192.168.20.0/24, 1 successors, FD is 46228736
via 172.16.1.2 (46228736/28160), Serial0/0.100
P 192.168.30.0/24, 1 successors, FD is 46228736
via 172.16.2.2 (46228736/28160), Serial0/0.200

Feasible Distance

Reported Distance


Abraçao pessoal,
Maurício.Hello staff,

Complementing my studies (and of you) on the conceptual part of the EIGRP below:

Regarding routes:

  • Successor route: Route to a major destination. Is shown in the command show ip route andshow ip route EIGRP topology as successor.
  • Feasible Successor: A possible alternative route to a destination. Presented in the table of topology and only goes into the routing table when a successor route becomes unreachable, or has a cost greater than the FS.

With respect to metric (cost)

  • Feasible Distance: Distance calculated to a destination. It is composed of the reported distance + the calculated cost to the destination.
  • Reported Distance (Distance advertised): Distance advertised by a neighbor router to a destination. This metric will always be smaller than the Feasible distance (as if more is going on a routing loop).


Here is the demonstration of these concepts.

R_Matriz # sh ip EIGRP topology
IP-EIGRP Topology Table for AS 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
r - Reply status

P 172.16.1.0/30, 1 successors, FD is 46226176
via Connected, Serial0/0.100
P 172.16.2.0/30, 1 successors, FD is 46226176
via Connected, Serial0/0.200
P 172.16.3.0/30, 1 successors, FD is 46226176
via Connected, Serial0/0.300
P 0.0.0.0/0, 1 successors, FD is 2169856
via Rstatic (2169856/0)
P 192.168.20.0/24, 1 successors, FD is 46228736
via 172.16.1.2 ( 46228736 / 28160 ), Serial0/0.100
P 192.168.30.0/24, 1 successors, FD is 46228736
via 172.16.2.2 (46228736/28160), Serial0/0.200

Feasible Distance

Reported Distance

Abrasive staff,
Maurício.

PROVA MARCADAEXAM SCHEDULED

Olá pessoal,

Minha prova está marcada para Segunda-feira (23/03/2009) às 9:00 da manhã.

Acredito estar preparado, faltando revisar alguns conceitos e fazer mais questões para trenar o nervosismo e a dinâmica da prova.

Aos que acompanham o blog, me desejem sorte e muito estudo.

Após a conclusão, quero detalhar no blog todos os pontos que passei pela prova, e detalhar ainda mais o meu método de estudo utilizado para a obtenção da Certificação.

Um forte abraço,

Maurício.Hello staff,

My test is scheduled for Monday (23/03/2009) at 9:00 in the morning.

I stand ready, missing concepts and to review some more questions for the nervousness and dynamic chain of evidence.

To the accompanying blog, wish me luck and much study.

After completion, I blog in detail all the points that had the evidence, and further detail my method of study used to obtain the certification.

Sincerely,

Maurício.

Guia e Roteiro de EstudosCCNA Study guide

Olá Pessoal,

Como podem ter visto, parei de atualizar um pouco o blog, devido ao fato de que estou estudando um montão para me certificar até o início de abril!

Para todos que desejam saber a maneira na qual estou me organizando para o estudo segue abaixo.

  1. Ler o livro CCNA 4.1 do Marco Filippeti.
  2. Fazer laboratórios de roteamento (ACL, NAT, Protocolos de roteamento, aprendizagem de rotas…).
  3. Fazer laboratório de switching (VLAN, VTP, administração, Etherchannel, STP…).
  4. Reler para entendimento o livro do Marco e NetAcademy, as partes de Switching e configuração de switches.
  5. Fazer todo TestKing da parte de Switching.
  6. Fazer um Pass4Sure para identificar pontos fracos.
  7. Voltar ao passo 4, lendo o que se identificou como ponto fraco, e seguir a seqüência até identificar que estou preparado.
  8. Marcar a prova para no máximo 3 dias adiante.

Este é o meu roteiro de estudos pessoal.

Se tiverem algum comentário para dar uma complementada, ou uma outra sugestão, agradeço muito o envolvimento.

Abração,

Maurício.Hello Guys,

As can be seen, stopped updating the blog a bit, due to the fact that I am studying a lot to satisfy me until the beginning of April!

For all who wish to know the way in which I am organizing for the study below.

  1. Read the book of Marco Filippeti CCNA 4.1.
  2. Do laboratories routing (ACL, NAT, routing protocols, routes of learning …).
  3. Do laboratory switching (VLAN, VTP, administration, Etherchannel, STP …).
  4. Read for understanding the book of Mark and NetAcademy, parts of Switching and setting switches.
  5. Do all TestKing from Switching.
  6. Add a Pass4Sure for weaknesses.
  7. Back to step 4 by reading what is identified as weak, and follow the sequence to identify that I am prepared.
  8. Mark the event for maximum 3 days later.

This is my personal roadmap studies.

If you have any comments to one supplemented, or another suggestion, thank you very much involvement.

Abrasive,

Maurício.

Resumo de Cabos para ConexõesSummary of Cables for Connection

Olá Pessoal,

Esse resumo segue para alguns que já tiveram suas dúvidas conforme as conexões utilizados entre dispositivos de rede.

Segue abaixo.

Hub Switch Router PC
Hub Crossover Crossover Straight Straight
Switch Crossover Crossover Straight Straight
Router Straight Straight Crossover/Serial… Crossover
PC Straight Straight Crossover Crossover

E não esqueçam. Para qualquer tipo de conexão console, é utilizado o cabo diferenciado: rollover.

Um abraço e boa semana.

Maurício.Hello Guys,

This summary is for some who already had their doubts as the connections used between network devices.

Below.

Hub Switch Router PC
Hub Crossover Crossover Straight Straight
Switch Crossover Crossover Straight Straight
Router Straight Straight Crossover / Serial … Crossover
PC Straight Straight Crossover Crossover

And do not forget. For any type of connection console, the cable is used differently: rollover.

A hug and good week.

Maurício.

Roteamento – Perguntas e RespostasRouting – Questions and Answers

Olá Pessoal,

O blog do Marco Filipetti é conhecido por possuir muito material de qualidade.

Neste link pode-se encontrar DIVERSAS informações sobre roteamento relativo a prova.

Muiiiiito interessante.

Abração,

Maurício.Hello Guys,

The blog of Marco Filipetti is known to have a lot of quality.

In this link you can find different information on the routing test.

Veeery interesting.

Abrasive,

Maurício.

Rotina de Inicialização dos Dispositivos CiscoInitialization routine for Cisco Devices

Olá pessoal,

Hoje, fiz um simulado para a Certificação e me fugiu a sequencia correta de inicialização e os locais default de onde são carregados cada um dos respectivos itens.

Segue abaixo a ordem de inicialização o que é carregado e de onde:

  1. POST (Power-on self-test) – verifica o hardware.
  2. Bootstrap (algo como a BIOS do roteador) –  Carregado a partir da ROM.
  3. IOS (OS do dispositivo) – Carregado a partir da FLASH. O dispositivo procura a IOS na seguinte seqüência: Flash, Tftp e ROM (mini-ios).
  4. Config (Arquivo startup-config) – Carregado a partir da NVRAM, se não for encontrado procura num servidor TFTP. Se não for encontrado em nenhum dos dois, entra em modo setup.

Vale ressaltar que os locais de onde são carregados cada um dos itens anteriores podem ser alterados. Normalmente, o Bootstrap e o IOS serão carregados a partir de seus lugares padrão, sendo o local das configurações algumas vezes modificado.

Sucesso a Todos Nós!

Maurício.

Referências:

– Odom, W. – “Guia de Certificação do Exame Cisco CCNA 3a Edição”, Alta Books/2003.Hello staff,

Today, I made a dummy for the Certification and I fled the correct boot sequence and default locations of where they are loaded each of their items.

Here is the order of the boot that is loaded and where:

  1. POST (Power-on self-test) – check the hardware.
  2. Bootstrap (something like the BIOS of the router) – Loaded from ROM.
  3. IOS (OS of the device) – Born from the FLASH. The device seeks to IOS in the following sequence: Flash, tftp and ROM (mini-ios).
  4. Config (file startup-config) – Born from the NVRAM, if not found in a search TFTP server. If not found in either, enter into setup mode.

Please note that the locations of where they are loaded each of the above can be changed. Typically, the Bootstrap and the IOS will be loaded from their seats standard, and the place settings sometimes modified.

Success to us all!

Maurício.

References:

– Odom, W. – “Guide for Certification of Cisco CCNA Exam 3rd Edition”, High Books/2003.

Cheatsheets e Resumos – por Packet LifeCheatsheets and Abstracts – by Packet Life

Olá Pessoal,

O pessoal do forum blog.ccna.com.br/forum postou um link que contêm diversos resumos de ótima qualidade, chamados de cheatsheets, escrito pelo pessoal do site Packet Life que inclui diversos tópicos que são escopo da CCNA. Abaixo, estão apresentados os links diretos para cada uma dessas cheatsheets.

Access-Lists, EIGRP, IPv6, OSPF, Spanning-Tree, Subnetting, VLAN, 802.11 Wireless

Link para o pacotão

Imagem da página com os resumos:

Página com os resumos da Packet Life

Abração,

Maurício.Hello Guys,

The staff of the forum blog.ccna.com.br / forum posted a link containing several summaries of excellent quality, calledcheatsheets, written by the staff of the site Life Packet which includes several topics that are scope of CCNA. Below, shows the direct links for each of these cheatsheets.

Access-Lists, EIGRP, IPv6, OSPF, spanning-tree, Subnetting, VLAN, Wireless 802.11

Link to the package

Image of the page with summaries:

Página com os resumos da Packet Life

Abrasive,

Maurício.

Resumo STP: O Spanning-Tree ProtocolSTP Summary: The spanning-Tree Protocol

O STP (Spanning-Tree Protocol)  roda em bridges e switches trocando informações através das BPDUs (Bridge Protocol Data Units). Estas BPDUs contêm mensagens de configuração e incluem o ID de cada bridge e são enviadas via frame multicast.
Para operação do STP é eleito uma Root Bridge (switch-raiz). Este switch-raiz torna-se o foco da rede, sendo que as escolhas de porta-raiz, porta-designada e não-designada e todas atualizações da rede são vistas pela perspectiva do switch-raiz. Para elegê-lo os seguintes parâmetros são utilizados:

1. Menor priority value (default é 32768);
2. Menor MAC Address (0000.aaaa.bbbb.cccc.dddd.eeee é menor que 0000.aaab.bbbb.cccc.dddd.eeee).

As portas podem ter os seguintes papeis:

Papel Descrição
Root port porta de um switch que possui menor custo ao root bridge. Sempre estão no estado forwarding).
Designated port porta de um switch que mantêm conectividade. Quando há redundância de conexões, a porta com maior largura de banda é a escolhida. Se as larguras de banda forem iguais, a porta com menor número será a escolhida(ex. e1 escolhida ao invés de e8).
Non-designated port porta que está em estado blocking. Quando uma porta designada perde a conectividade esta porta assume, até que receba atualização para voltar ao estado blocking

A figura abaixo apresenta uma topologia contendo os termos abordados acima:

Papéis das portas no Spanning-Tree.
Papéis das portas no Spanning-Tree.

Foram visto os papéis que as portas possuem. Agora, serão vistos os estados em que elas podem se encontrar. Tipicamente, switches estão no estado blocking ou forwarding. Abaixo, é apresentado cada um dos estados, na seqüência em que eles ocorrem.

Estado Descrição
Blocking Não encaminha frames. Recebe e analisa BPDUs. Ao ligar um switch, ele encontra-se no estado blocking.
Listening Não encaminha frames, mas recebe e analisa BPDUs para se certificar que não ocorrerão loops na rede.
Learning Não encaminha frames, recebe e analisa BPDUs e registra os endereços MAC dos dispositivos diretamente conectados.
Forwarding Envia e recebe frames e tudo mais. Uma porta neste estado é tida como tendo o menor custo ao switch-raiz.

Abaixo, é apresentado os timers das BPDUs:

Timers de cada um tipo de BPDU do STP (Spanning-Tree Protocol).
Timers de cada um tipo de BPDU do STP (Spanning-Tree Protocol).

Abaixo, é apresentado uma animação Flash muito didática que apresenta todo o processo de aprendizagem do Spanning-Tree. A MUST.

Abaixo, seguem os links de referência que foram utilizados para a produção do resumo.

Um interessante, que aprofunda o assunto é a terceira referência. Pode ser encontrada traduzida (pelo google) aqui.

Um abração,

Maurício.

Referências:

– Filippeti, M. – “CCNA 4.1 – Guia Completo de Estudo”, Visual Books/2008.

– Cisco NetAcademy, Academy Connection. “Material oficial Cisco de Estudo”. <http://cisco.netacad.net>. Acesso em: 03/03/2008.

– Cisco Systems inc. “Understanding and Configuring Spanning Tree Protocol (STP) on Catalyst Switches”.<http://www.cisco.com/en/US/tech/tk389/tk621/technologies_configuration_example09186a008009467c.shtml>. Acesso em: 03/03/2008.

The STP (spanning-Tree Protocol) runs on bridges and switches exchange information through the BPDUs (Bridge Protocol Data Units). These BPDUs contain configuration messages and include the ID of each bridge and are sent via broadcast frames.
For operation of an STP Root Bridge is elected (the root switch). This switch-root becomes the focus of the network, and the choices of the root port, port-designated and non-designated network and all updates are seen by the prospect of the root switch. To elect him the following parameters are used:

1st Lower priority value (default is 32768);
2nd Minor MAC Address (0000.aaaa.bbbb.cccc.dddd.eeee is less than 0000.aaa b. Bbbb.cccc.dddd.eeee).

The doors may have the following roles:

Role Description
Root port port on a switch that has lower cost to root bridge. Where are the forwarding state).
Designated port port on a switch to maintain connectivity. When there are redundant connections, the port with higher bandwidth is chosen. If the band widths are the same, the port with the lowest number will be chosen (eg e1 chosen instead of E8).
Non-designated port port that is in blocking state. When a designated port loses connectivity to this port is, until it receives back to update the state blocking

The figure below shows a topology with the terms discussed above:

Papéis das portas no Spanning-Tree.

Roles of the ports spanning-Tree.

Have seen the papers that have doors. Now, will see the states where they can find. Typically, the switches are blocking orforwarding state. Below is presented each of the states in the sequence in which they occur.

State Description
Blocking Do not forward frames. Receives and analyzes BPDUs. By connecting a switch, it is in blocking state.
Listening Do not forward frames, but receives and analyzes BPDUs to make sure that no loops occur on the network.
Learning Do not forward frames, and receives BPDUs analyzes and records the MAC addresses of devices connected directly.
Forwarding Sends and receives frames and everything. A port in this state is regarded as having the lowest cost to the root switch.

Below is presented the timers of BPDUs:

Timers de cada um tipo de BPDU do STP (Spanning-Tree Protocol).

Timers for each type of BPDU STP (spanning-Tree Protocol).

Below is a flash animation that presents very intuitive the process of learning the spanning-Tree. A MUST.

Below, follow the links to reference that were used to produce the summary.

An interesting, which deepens the matter is the third reference. Can be found translated (by Google) here.

A Abrasive,

Maurício.

References:

– Filippeti, M. – “CCNA 4.1 – Complete Study Guide, Visual Books/2008.

– Cisco NetAcademy, Academy Connection. “Cisco Study Material official.” <http://cisco.netacad.net>. Acesso em: 03/03/2008.

– Cisco Systems inc. “Understanding and Configuring spanning Tree Protocol (STP) on Catalyst Switches”.<Http://www.cisco.com/en/US/tech/tk389/tk621/technologies_configuration_example09186a008009467c.shtml>. Acesso em: 03/03/2008.

Não passou na CCNA? Tenha uma segunda chance de graçaDid not pass the CCNA? Get a second chance for free

Olá Pessoal,

Este post é para informar a todos, e isso foi confirmado pelo Marco deste blog que o seguinte desconto está valendo até 20 de julho de 2009:

“Você deve fazer a prova para uma certificação, não passar e poderá agendar até esta data, refazê-la e não pagar nada.”

Para isso, deve utilizar o Promotion Code: COMEBACK2009, ao agendar sua prova no site da Vue (abaixo).

COMEBACK2009 - Promotion Code para fazer a CCNA pela segunda vez de graça.

Abaixo, segue a mensagem do site da VUE ao tentar cadastrar uma prova. Notem a data da validade da promoção.

Mensagem da VUE indicando validade até 20/jul/2009 para COMEBACK2009

Um abração,

Sucesso – by Maurício.Hello Guys,

This post is to inform everyone, and this was confirmed by Marco this blog the following discount is valid until July 20, 2009:

“You must do the test for certification, and could not pass schedule to date, redo it and not pay anything.”

This should use the Promotion Code: COMEBACK2009 to schedule your test on the website of the Vue (below).

COMEBACK2009 - Promotion Code para fazer a CCNA pela segunda vez de graça.

Below, the following message VUE’s website when trying to register a trial. Please note the date of the validity of the promotion.

Mensagem da VUE indicando validade até 20/jul/2009 para COMEBACK2009

A Abrasive,

Success – by Mauricio.

Laboratório Spanning Tree Protocol – ConvergênciaLab Spanning Tree Protocol – Convergence

Olá Pessoal,

Encontrei este laboratório na Internet, dedicado ao aprendizado de como funciona a convergência do protocolo STP (Spanning-Tree Protocol).

Com ele é possível ver quem é o Root Bridge, as Root, Designed e Non-designed ports e acompanhar a convergência da rede conforme se apagam links e Switchs da topologia.

Laboratorio Spanning-Tree Protocol STP

Abaixo uma figura do laboratório.

Topologia Laboratório Spanning Tree STP.
Topologia Spanning-Tree do laboratório.

Um abração pessoal.

Maurício.Hello Guys,

I found this laboratory on the Internet, dedicated to learning how the convergence of the protocol STP (spanning-Tree Protocol).

With it you can see who is the Root Bridge, the Root, Designed and Non-designed ports and monitor the convergence of the network as links off the topology and Switchs.

Laboratorio spanning-Tree Protocol STP

Below a picture of the laboratory.

Topologia Laboratório Spanning Tree STP.

Spanning-tree topology of the lab.

A Abrasive staff.

Maurício.

Resumo de Comandos Show: Roteamento OSPF, NAT e ACLSummary of Show Commands: OSPF Routing, NAT and ACL

Olá Pessoal,

Baseado neste laboratório de Frame-relay, dou continuidade à lista de comandos Show. Agora, tratando de: roteamento, OSPF, NAT e ACL.

Abaixo apresento uma imagem da topologia, e então os comandos Show, baseado na mesma.

Topologia do Laboratório Completo de Frame-Relay.
Topologia do Laboratório Completo de Frame-Relay.
COMANDO RELACIONADO A RESULTADO
Show ip route Tabela de Roteamento Apresenta a tabela de roteamento. Mostra a rede na qual foi aprendido (dinâmica ou estaticamente), [distância administrativa/métrica] e o IP e a interface na qual foi aprendida esta rota
Show ip protocols Protocolo de Roteamento Apresenta informações dos protocolos de roteamento em execução (resumo e status). São dadas informações como: detalhes específicos de cada protocolo (ex. Router ID para OSPF), redes que está anunciando e vizinhos (fontes) de roteamento.
Show ip ospf OSPF Apresenta as configurações estipuladas para o protocolo OSPF. Apresenta informações como: Router ID (o maior ID (IP) ou o ID definido na interface Loopback, se existir) e temporizadores.
show ip ospf data OSPF Apresenta, agora, os Link IDs, ou seja, o ID que cada link (interface) possui, o tempo no qual foi aprendido (age) e o Link ID (ID da interface do roteador) que está anunciando a rota.
Show ip ospf interface <interface> OSPF Apresenta todas informações OSPF relativo a cada interface. Informações como: endereço IP, área OSPF, Router ID, tipo de rede (ppp,point-to-multipoint), informações sobre DR/BDR(para links ppp o OSPF não elege DRs), timers e informações sobre vizinhos (adjacências).
Show ip ospf neighbor OSPF Apresenta um resumo e status da adjacência com os vizinhos. Este comando apresenta informações como: ID do router vizinho, estado (DR,BDR..), dead time (tempo até a rota se extinguir, ou receber um novo hello), endereço IP do vizinho e interface local do Router no qual se encontra este vizinho.
Show ip nat translations NAT Apresenta as traduções NAT feitas e informações como: protocolo, inside local e global e outside local e global.
Show ip Nat statistics NAT Apresenta estatísticas de tradução NAT.
Show ip Access-lists ACLs Apresenta todas as ACLs IP criadas e a quantidade de matches (quantas vezes ela foi aplicada).

Comandos:


R_NH#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 172.16.1.1 to network 0.0.0.0

172.16.0.0/30 is subnetted, 3 subnets
C 172.16.1.0 is directly connected, Serial0/0.101
O 172.16.2.0 [110/3570] via 172.16.1.1, 00:01:05, Serial0/0.101
O 172.16.3.0 [110/3570] via 172.16.1.1, 00:01:05, Serial0/0.101
C 192.168.20.0/24 is directly connected, FastEthernet0/0
O 192.168.30.0/24 [110/3571] via 172.16.1.1, 00:01:05, Serial0/0.101
O 192.168.40.0/24 [110/3571] via 172.16.1.1, 00:01:05, Serial0/0.101
O*E2 0.0.0.0/0 [110/1] via 172.16.1.1, 00:01:05, Serial0/0.101

R_Matriz#show ip protocols
Routing Protocol is "ospf 20"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 201.0.0.2
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
172.16.1.0 0.0.0.3 area 0
172.16.2.0 0.0.0.3 area 0
172.16.3.0 0.0.0.3 area 0
Routing Information Sources:
Gateway Distance Last Update
172.16.1.2 110 00:16:43
172.16.2.2 110 00:16:43
172.16.3.2 110 00:16:43
Distance: (default is 110)

R_Matriz#show ip ospf
Routing Process "ospf 20" with ID 201.0.0.2
Supports only single TOS(TOS0) routes
Supports opaque LSA
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
Number of external LSA 1. Checksum Sum 0x00f80e
Number of opaque AS LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
Area BACKBONE(0)
Number of interfaces in this area is 3
Area has no authentication
SPF algorithm executed 2 times
Area ranges are
Number of LSA 4. Checksum Sum 0x021d3a
Number of opaque link LSA 0. Checksum Sum 0x000000
Number of DCbitless LSA 0
Number of indication LSA 0
Number of DoNotAge LSA 0
Flood list length 0

R_Matriz#show ip ospf data
OSPF Router with ID (201.0.0.2) (Process ID 20)

Router Link States (Area 0)

Link ID ADV Router Age Seq# Checksum Link count
192.168.20.1 192.168.20.1 379 0x80000003 0x00d1a1 3
201.0.0.2 201.0.0.2 379 0x80000007 0x000857 6
192.168.40.1 192.168.40.1 379 0x80000003 0x0091a1 3
192.168.30.1 192.168.30.1 379 0x80000003 0x00b1a1 3

Type-5 AS External Link States
Link ID ADV Router Age Seq# Checksum Tag
0.0.0.0 201.0.0.2 389 0x80000001 0x00f80e 1

R_NH#show ip ospf interface
FastEthernet0/0 is up, line protocol is up
Internet address is 192.168.20.1/24, Area 0
Process ID 20, Router ID 192.168.20.1, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 192.168.20.1, Interface address 192.168.20.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:01
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
Serial0/0.101 is up, line protocol is up
Internet address is 172.16.1.2/30, Area 0
Process ID 20, Router ID 192.168.20.1, Network Type POINT-TO-POINT, Cost: 1785
Transmit Delay is 1 sec, State POINT-TO-POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:01
Index 2/2, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1 , Adjacent neighbor count is 1
Adjacent with neighbor 172.16.1.1
Suppress hello for 0 neighbor(s)

R_Matriz#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
192.168.20.1 1 FULL/- 00:00:37 172.16.1.2 Serial0/0.100
192.168.30.1 1 FULL/- 00:00:37 172.16.2.2 Serial0/0.200
192.168.40.1 1 FULL/- 00:00:37 172.16.3.2 Serial0/0.300

R_Matriz#show ip nat translations
Pro Inside global Inside local Outside local Outside global
icmp 201.0.0.2:3 192.168.40.3:3 200.213.1.2:3 200.213.1.2:3
tcp 201.0.0.2:1025 192.168.20.3:1025 200.213.1.1:23 200.213.1.1:23

R_Matriz#show ip nat statistics
Total translations: 1 (0 static, 1 dynamic, 1 extended)
Outside Interfaces: Serial0/1
Inside Interfaces: Serial0/0.100 , Serial0/0.200 , Serial0/0.300
Hits: 8 Misses: 4
Expired translations: 3
Dynamic mappings:

R_Matriz#show ip access-lists
Standard IP access list 1
permit 172.16.1.0 0.0.0.3
permit 172.16.2.0 0.0.0.3
permit 172.16.3.0 0.0.0.3
permit 192.168.20.0 0.0.0.255 (2 match(es))
permit 192.168.30.0 0.0.0.255
permit 192.168.40.0 0.0.0.255 (6 match(es))

Abração,

E sucesso a todos.

Referências:

– Filippeti, M. – “CCNA 4.1 – Guia Completo de Estudo”, Visual Books/2008.

– Cisco NetAcademy, Academy Connection. “Material oficial Cisco de Estudo”. <http://cisco.netacad.net>. Acesso em: 02/03/2008.Hello Guys,

Based on this laboratory for Frame-relay, I continue the list of commands Show. Now, trying to: routing, OSPF, NAT, and ACL.

Below shows a picture of the topology, and then show the commands based on it.

Topologia do Laboratório Completo de Frame-Relay.

Topology of the Laboratory of Full-Frame Relay.

COMMAND A RELATED RESULT
Show ip route Routing Table Displays the routing table. Shows the network in what was learned (dynamic or static) [administrative distance / metric] and IP and the interface on which this route was learned
Show ip protocols Routing Protocol Displays information from routing protocols running (summary and status). Information is given as specific details of each protocol (eg Router ID for OSPF), and advertising networks that are neighbors (source) routing.
Show ip ospf OSPF Displays the settings set to the OSPF protocol. Displays information such as: Router ID (the highest ID (IP) or the ID defined in the Loopback interface, if any) and timers.
show ip ospf data OSPF Displays now link the IDs, or the ID for each link (interface) has the time in which it was learned (age) and the link ID (ID of the interface of the router) that is advertising the route.
Show ip ospf interface <interface> OSPF Displays all information on each OSPF interface. Information such as IP address, OSPF area, Router ID, type of network (ppp, point-to-multipoint), information on DR / BDR (ppp links to the OSPF not elect DRs), timers and information about neighbors (vicinity).
Show ip ospf neighbor OSPF Presents a summary and status of the adjacency with its neighbors.This command displays information such as neighbor router ID, state (DR, BDR ..), dead time (time until the route goes out, or receives a newhello), IP address of the neighbor and the local router interface which is this neighbor.
Show ip nat translations NAT Displays NAT translations made and information such as protocol,inside global, outside local, and local and global.
Show ip Nat statistics NAT Displays statistics for NAT translation.
Show ip access-lists ACLs Displays IP ACLs all created and the number of matches (how many times it was applied).

Commands:


R_NH#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 172.16.1.1 to network 0.0.0.0

172.16.0.0/30 is subnetted, 3 subnets
C 172.16.1.0 is directly connected, Serial0/0.101
O 172.16.2.0 [110/3570] via 172.16.1.1, 00:01:05, Serial0/0.101
O 172.16.3.0 [110/3570] via 172.16.1.1, 00:01:05, Serial0/0.101
C 192.168.20.0/24 is directly connected, FastEthernet0/0
O 192.168.30.0/24 [110/3571] via 172.16.1.1, 00:01:05, Serial0/0.101
O 192.168.40.0/24 [110/3571] via 172.16.1.1, 00:01:05, Serial0/0.101
O*E2 0.0.0.0/0 [110/1] via 172.16.1.1, 00:01:05, Serial0/0.101

R_Matriz#show ip protocols
Routing Protocol is “ospf 20?
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 201.0.0.2
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
172.16.1.0 0.0.0.3 area 0
172.16.2.0 0.0.0.3 area 0
172.16.3.0 0.0.0.3 area 0
Routing Information Sources:
Gateway Distance Last Update
172.16.1.2 110 00:16:43
172.16.2.2 110 00:16:43
172.16.3.2 110 00:16:43
Distance: (default is 110)
00:16:43 R_Matriz#show ip protocols
Routing Protocol is “ospf 20?
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 201.0.0.2
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
172.16.1.0 0.0.0.3 area 0
172.16.2.0 0.0.0.3 area 0
172.16.3.0 0.0.0.3 area 0
Routing Information Sources:
Gateway Distance Last Update
172.16.1.2 110 00:16:43
172.16.2.2 110 00:16:43
172.16.3.2 110 00:16:43
Distance: (default is 110)
00:16:43 R_Matriz#show ip protocols
Routing Protocol is “ospf 20?
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 201.0.0.2
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
172.16.1.0 0.0.0.3 area 0
172.16.2.0 0.0.0.3 area 0
172.16.3.0 0.0.0.3 area 0
Routing Information Sources:
Gateway Distance Last Update
172.16.1.2 110 00:16:43
172.16.2.2 110 00:16:43
172.16.3.2 110 00:16:43
Distance: (default is 110)
00:16:43 R_Matriz#show ip protocols
Routing Protocol is “ospf 20?
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 201.0.0.2
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
172.16.1.0 0.0.0.3 area 0
172.16.2.0 0.0.0.3 area 0
172.16.3.0 0.0.0.3 area 0
Routing Information Sources:
Gateway Distance Last Update
172.16.1.2 110 00:16:43
172.16.2.2 110 00:16:43
172.16.3.2 110 00:16:43
Distance: (default is 110)

R_Matriz#show ip ospf
Routing Process “ospf 20? with ID 201.0.0.2
Supports only single TOS(TOS0) routes
Supports opaque LSA
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
Number of external LSA 1. Checksum Sum 0×00f80e
Number of opaque AS LSA 0. Checksum Sum 0×000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
Area BACKBONE(0)
Number of interfaces in this area is 3
Area has no authentication
SPF algorithm executed 2 times
Area ranges are
Number of LSA 4. Checksum Sum 0×021d3a
Number of opaque link LSA 0. Checksum Sum 0×000000
Number of DCbitless LSA 0
Number of indication LSA 0
Number of DoNotAge LSA 0
Flood list length 0

R_Matriz#show ip ospf data
OSPF Router with ID (201.0.0.2) (Process ID 20)

Router Link States (Area 0)

Link ID ADV Router Age Seq# Checksum Link count
192.168.20.1 192.168.20.1 379 0x80000003 0x00d1a1 3
201.0.0.2 201.0.0.2 379 0x80000007 0x000857 6
192.168.40.1 192.168.40.1 379 0x80000003 0x0091a1 3
192.168.30.1 192.168.30.1 379 0x80000003 0x00b1a1 3

Type-5 AS External Link States
Link ID ADV Router Age Seq# Checksum Tag
0.0.0.0 201.0.0.2 389 0x80000001 0x00f80e 1

R_NH#show ip ospf interface
FastEthernet0/0 is up, line protocol is up
Internet address is 192.168.20.1/24, Area 0
Process ID 20, Router ID 192.168.20.1, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 192.168.20.1, Interface address 192.168.20.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:01
Index 1/1, flood queue length 0
Next 0×0(0)/0×0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
Serial0/0.101 is up, line protocol is up
Internet address is 172.16.1.2/30, Area 0
Process ID 20, Router ID 192.168.20.1, Network Type POINT-TO-POINT, Cost: 1785
Transmit Delay is 1 sec, State POINT-TO-POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:01
Index 2/2, flood queue length 0
Next 0×0(0)/0×0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1 , Adjacent neighbor count is 1
Adjacent with neighbor 172.16.1.1
Suppress hello for 0 neighbor(s)

R_Matriz#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
192.168.20.1 1 FULL/- 00:00:37 172.16.1.2 Serial0/0.100
192.168.30.1 1 FULL/- 00:00:37 172.16.2.2 Serial0/0.200
192.168.40.1 1 FULL/- 00:00:37 172.16.3.2 Serial0/0.300

R_Matriz#show ip nat translations
Pro Inside global Inside local Outside local Outside global
icmp 201.0.0.2:3 192.168.40.3:3 200.213.1.2:3 200.213.1.2:3
tcp 201.0.0.2:1025 192.168.20.3:1025 200.213.1.1:23 200.213.1.1:23

R_Matriz#show ip nat statistics
Total translations: 1 (0 static, 1 dynamic, 1 extended)
Outside Interfaces: Serial0/1
Inside Interfaces: Serial0/0.100 , Serial0/0.200 , Serial0/0.300
Hits: 8 Misses: 4
Expired translations: 3
Dynamic mappings:

R_Matriz#show ip access-lists
Standard IP access list 1
permit 172.16.1.0 0.0.0.3
permit 172.16.2.0 0.0.0.3
permit 172.16.3.0 0.0.0.3
permit 192.168.20.0 0.0.0.255 (2 match(es))
permit 192.168.30.0 0.0.0.255
permit 192.168.40.0 0.0.0.255 (6 match(es))

Abrasive,

And success to all.

References:

– Filippeti, M. – “CCNA 4.1 – Complete Study Guide, Visual Books/2008.

– Cisco NetAcademy, Academy Connection. “Cisco Study Material official.” <http://cisco.netacad.net>. Acesso em: 02/03/2008.

Video Mentor 640-802, por Wendell OdomVideo Mentor 640-802 by Wendell Odom

Wendell Odom
Wendell Odom, the Mentor

Olá Pessoal,

Foi adicionado ao HD do Blog, o curso de vídeo:

Cisco Press – CCNA Video Mentor (Exam 640-802), Second Edition

Narrado por: Wendell Odom

Estes vídeos, pelo que entendi, foram compactados com o Quicktime para reduzir o tamanho, por isso é necessário rodá-los com o próprio. No HD, está disponível uma versão light do Quicktime, na mesma pasta. Encontram-se na pasta Video Mentor no HD do Blog (link abaixo). Link para HD do Blog

Detalhe que como os vídeos são narrados em inglês é necessário um bom entendimento na língua, ou quem encontrar legendas pode fazer o upload para a pasta pública.

Abração,

Maurício.

Hello Guys,

HD was added to the Blog, the course of video:

Cisco Press – CCNA Video Mentor (Exam 640-802), Second Edition

Narrated by: Wendell Odom

These videos, which I understand have been compressed withQuicktime to reduce the size, so it is necessary to turn them with your own. In HD, is available a light version of Quicktime, in the same folder. They are in the folder on the HD Video Mentor Blog (link below).Link to HD Blog

That detail how the videos are narrated in English requires a good understanding in the language, or who find subtitles can upload to public folder.

Abrasive,

Maurício.

Resumo de Comandos Show no RoteadorSummary of the Router Show Commands

Olá Pessoal,

Com base no laboratório de Frame-Relay publicado anteriormente neste Post e após todo o estudo da topologia rodei os comandos abaixo, coloquei suas saídas e fiz uma tabela com uma descrição completa do que cada comando apresenta. Há um link no comando que leva diretamente para seu output.

Espero que seja de bom uso esta tabela, pois eu a utilizarei.

Um abração pessoal.

Maurício.

COMANDO RELACIONADO A RESULTADO
Show interface <interface> Hardware Apresenta status do link, endereço IP, clock rate, MTU, e protocolos da camada física e de enlace rodando (ex: LCP, NCP no PPP).
Show ip interface <interface> Configuração Apresenta dados como: status da conexão física e lógica, endereço IP, MTU, ACLs, NAT e diversos outros parâmetros.
show ip interface brief Configuração Resumo da interface: endereço IP, status do link físico e lógico,
show protocols Configuração Apresenta status do link e endereço IP, deste.
show ip protocols Protocolos de Roteamento Apresenta todas informações relevantes aos protocolos de roteamento em uso: parâmetros de configuração, rotas anunciadas, última atualização.
show ip route Tabela de Roteamento Apresenta a tabela de roteamento. Mostra a rede na qual foi aprendido (dinâmica ou estaticamente), [distância administrativa/métrica] e o IP e a interface na qual foi aprendida esta rota
show ip eigrp interfaces <AS> EIGRP Apresenta as interfaces na qual o EIGRP está rodando. Pode-se não anunciar rotas em determinadas interfaces através do comando passive-interfaces.
show ip eigrp neighbors EIGRP Apresenta os vizinhos rodando EIGRP e dados como: IP do vizinho, interface, Holdtime, Uptime, SRTT (Smooth Round Trip Time), RTO (Retransmission Time Out), Q Cnt (Queue), Seq Num.
show ip eigrp topology EIGRP Apresenta a topologia da rede. Indica: estado da rota (passive/active), (feasible distance/advertised distance).
show ip eigrp traffic EIGRP Apresenta estatísticas de pacotes EIGRP.
show frame-relay lmi Frame-Relay Apresenta estatísticas a respeito do LMI (Link Management Interface), o padrão de sinalização, entre o dispositivo local e o switch frame-relay.
show frame-relay map Frame-Relay Apresenta o mapeamento IP -> DLCI (Data Link Connection Identifier), normalmente criado através do comando frame map, ou através da tradução dinâmica pelo Inverse ARP.
show frame-relay pvc Frame-Relay Apresenta estatísticas em cada circuito frame-relay e outros dados tais como: interfaces e respectivos DLCI, tráfego, bits DE (Discard Eligibility), FECN (Forward-Explicit Congestion Notification), BECN (Backward-Explicit Congestion Notification).
show cdp CDP Apresenta informações relevantes aos timers: de envio de atualizações, holdtime e a versão anunciada do cdp.
show cdp neighbors CDP Apresenta informações referente aos vizinhos tais como: Device ID (Hostname), Local Intrf (Interface que este router está recebendo os pacotes cdp), HoldTime, Capability (Router / Switch…), Plataform (Modelo), Port ID (Porta remota).
show cdp neighbors detail CDP Apresenta as mesmas informações que o anterior, incluindo: IP do outro host e detalhes de IOS.
Show cdp entry * CDP Mesmo comando que o anterior, mudando que pode-se selecionar apenas um dispositivo pelo seu ID.

OUTPUTS:

R_Caxias#show interfaces
FastEthernet0/0 is up, line protocol is up (connected)
Hardware is Lance, address is 0001.4211.2e01 (bia 0001.4211.2e01)
Internet address is 192.168.30.1/24
MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec, rely 255/255, load 1/255
Encapsulation ARPA, loopback not set
ARP type: ARPA, ARP Timeout 04:00:00,
Last input 00:00:08, output 00:00:05, output hang never
Last clearing of "show interface" counters never
Queueing strategy: fifo
Output queue :0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 124 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
0 input packets with dribble condition detected
789 packets output, 56808 bytes, 0 underruns
0 output errors, 0 collisions, 1 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier
0 output buffer failures, 0 output buffers swapped out

R_Caxias#show ip interface
FastEthernet0/0 is up, line protocol is up (connected)
Internet address is 192.168.30.1/24
Broadcast address is 255.255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound access list is not set
Proxy ARP is enabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP mask replies are never sent
IP fast switching is disabled
IP fast switching on the same interface is disabled
IP Flow switching is disabled
IP Fast switching turbo vector
IP multicast fast switching is disabled
IP multicast distributed fast switching is disabled
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
WCCP Redirect outbound is disabled
WCCP Redirect exclude is disabled
BGP Policy Mapping is disabled

R_Caxias#show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 192.168.30.1 YES manual up up
FastEthernet0/1 unassigned YES manual administratively down down
Serial0/0 unassigned YES manual up up
Serial0/0.201 172.16.2.2 YES manual up up
Serial0/1 unassigned YES manual administratively down down

R_Caxias#show protocols
Global values:
Internet Protocol routing is enabled
FastEthernet0/0 is up, line protocol is up
Internet address is 192.168.30.1/24
FastEthernet0/1 is administratively down, line protocol is down
Serial0/0 is up, line protocol is up
Serial0/0.201 is up, line protocol is up
Internet address is 172.16.2.2/30
Serial0/1 is administratively down, line protocol is down

R_Caxias#show ip protocols
Routing Protocol is "eigrp 10 "
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Default networks flagged in outgoing updates
Default networks accepted from incoming updates
EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
EIGRP maximum hopcount 100
EIGRP maximum metric variance 1
Redistributing: eigrp 10
Automatic network summarization is not in effect
Maximum path: 4
Routing for Networks:
192.168.30.0
172.16.0.0
Routing Information Sources:
Gateway Distance Last Update
172.16.2.1 90 10
Distance: internal 90 external 170


R_Caxias#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 172.16.2.1 to network 0.0.0.0

172.16.0.0/30 is subnetted, 3 subnets
D 172.16.1.0 [90/46738176] via 172.16.2.1, 00:29:06, Serial0/0.201
C 172.16.2.0 is directly connected, Serial0/0.201
D 172.16.3.0 [90/46738176] via 172.16.2.1, 00:29:06, Serial0/0.201
D 192.168.20.0/24 [90/46740736] via 172.16.2.1, 00:29:06, Serial0/0.201
C 192.168.30.0/24 is directly connected, FastEthernet0/0
D 192.168.40.0/24 [90/46740736] via 172.16.2.1, 00:29:06, Serial0/0.201
D*EX 0.0.0.0/0 [170/46738176] via 172.16.2.1, 00:29:06, Serial0/0.201


R_Caxias#show ip eigrp interfaces
IP-EIGRP interfaces for process 10

Xmit Queue Mean Pacing Time Multicast Pending
Interface Peers Un/Reliable SRTT Un/Reliable Flow Timer Routes
Fa0/0 0 0/0 1236 0/10 0 0
Ser 1 0/0 1236 0/10 0 0
R_Caxias#show ip eigrp interfaces ?
<1-65535> AS Number


R_Matriz#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.3.2 Ser 14 01:01:00 40 1000 0 11
1 172.16.1.2 Ser 11 01:01:00 40 1000 0 11
2 172.16.2.2 Ser 14 01:01:00 40 1000 0 11

R_Caxias#show ip eigrp topology
IP-EIGRP Topology Table for AS 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
r - Reply status

P 192.168.30.0/24, 1 successors, FD is 28160
via Connected, FastEthernet0/0
P 172.16.2.0/30, 1 successors, FD is 46226176
via Connected, Serial0/0.201
P 172.16.1.0/30, 1 successors, FD is 46738176
via 172.16.2.1 (46738176/46226176), Serial0/0.201
P 172.16.3.0/30, 1 successors, FD is 46738176
via 172.16.2.1 (46738176/46226176), Serial0/0.201
P 0.0.0.0/0, 1 successors, FD is 46738176
via 172.16.2.1 (46738176/2169856), Serial0/0.201
P 192.168.20.0/24, 1 successors, FD is 46740736
via 172.16.2.1 (46740736/46228736), Serial0/0.201
P 192.168.40.0/24, 1 successors, FD is 46740736
via 172.16.2.1 (46740736/46228736), Serial0/0.201


R_Caxias#show ip eigrp traffic
IP-EIGRP Traffic Statistics for process 10
Hellos sent/received: 882/873
Updates sent/received: 6/4
Queries sent/received: 0/0
Replies sent/received: 0/0
Acks sent/received: 1/4
Input queue high water mark 1, 0 drops
SIA-Queries sent/received: 0/0
SIA-Replies sent/received: 0/0


R_Caxias#show frame-relay lmi
LMI Statistics for interface Serial0/0 (Frame Relay DTE) LMI TYPE = CISCO
Invalid Unnumbered info 0 Invalid Prot Disc 0
Invalid dummy Call Ref 0 Invalid Msg Type 0
Invalid Status Message 0 Invalid Lock Shift 0
Invalid Information ID 0 Invalid Report IE Len 0
Invalid Report Request 0 Invalid Keep IE Len 0
Num Status Enq. Sent 549 Num Status msgs Rcvd 549
Num Update Status Rcvd 0 Num Status Timeouts 16

LMI Statistics for interface Serial0/0.201 (Frame Relay DTE) LMI TYPE = CISCO
Invalid Unnumbered info 0 Invalid Prot Disc 0
Invalid dummy Call Ref 0 Invalid Msg Type 0
Invalid Status Message 0 Invalid Lock Shift 0
Invalid Information ID 0 Invalid Report IE Len 0
Invalid Report Request 0 Invalid Keep IE Len 0
Num Status Enq. Sent 0 Num Status msgs Rcvd 0
Num Update Status Rcvd 0 Num Status Timeouts 16


R_Matriz#show frame-relay map
Serial0/0.100 (up): point-to-point dlci, dlci 100, broadcast, status defined, active
Serial0/0.200 (up): point-to-point dlci, dlci 200, broadcast, status defined, active
Serial0/0.300 (up): point-to-point dlci, dlci 300, broadcast, status defined, active

R_Matriz#show frame-relay pvc
PVC Statistics for interface Serial0/0 (Frame Relay DTE)
DLCI = 100, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0.100

input pkts 14055 output pkts 32795 in bytes 1096228
out bytes 6216155 dropped pkts 0 in FECN pkts 0
in BECN pkts 0 out FECN pkts 0 out BECN pkts 0
in DE pkts 0 out DE pkts 0
out bcast pkts 32795 out bcast bytes 6216155

DLCI = 200, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0.200

input pkts 14055 output pkts 32795 in bytes 1096228
out bytes 6216155 dropped pkts 0 in FECN pkts 0
in BECN pkts 0 out FECN pkts 0 out BECN pkts 0
in DE pkts 0 out DE pkts 0
out bcast pkts 32795 out bcast bytes 6216155

DLCI = 300, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0.300

input pkts 14055 output pkts 32795 in bytes 1096228
out bytes 6216155 dropped pkts 0 in FECN pkts 0
in BECN pkts 0 out FECN pkts 0 out BECN pkts 0
in DE pkts 0 out DE pkts 0
out bcast pkts 32795 out bcast bytes 6216155

R_Matriz#show frame-relay pvc ?
<16-1022> DLCI
interface show frame relay information on one interface

R_Matriz#show cdp
Global CDP information:
Sending CDP packets every 60 seconds
Sending a holdtime value of 180 seconds
Sending CDPv2 advertisements is enabled
R_Matriz#show cdp ?
entry Information for specific neighbor entry
interface CDP interface status and configuration
neighbors CDP neighbor entries

R_Matriz#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID Local Intrfce Holdtme Capability Platform Port ID
R_Embratel Ser 0/1 180 R C2600 Ser 0/0

R_Matriz#show cdp neighbors detail || show cdp entry *
Device ID: R_Embratel
Entry address(es):
IP address : 201.0.0.1
Platform: cisco C2600, Capabilities: Router
Interface: Serial0/1, Port ID (outgoing port): Serial0/0
Holdtime: 180

Version :
Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-I-M), Version 12.2(28), RELEASE SOFTWARE (fc5)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2005 by cisco Systems, Inc.
Compiled Wed 27-Apr-04 19:01 by miwang

advertisement version: 2
Duplex: full

Referências:

– Filippeti, M. – “CCNA 4.1 – Guia Completo de Estudo”, Visual Books/2008.

– Cisco NetAcademy, Academy Connection. “Material oficial Cisco de Estudo”. <http://cisco.netacad.net>. Acesso em: 27/02/2008.Hello Guys,

Based on the laboratory of Frame-Relay published earlier in this post and after all the study of topology tergiversation the commands below, put their exits and made a table with a full description of what each line offers. There is a link that leads directly in charge for their output.

I hope that is good use of this table, because I use.

A Abrasive staff.

Maurício.

COMMAND A RELATED RESULT
Show interface <interface> Hardware Displays the link status, IP address, clock rate, MTU, and protocols of physical layer and link running (eg LCP, NCP in PPP).
Show ip interface <interface> Configuration Presents data such as status of physical and logical connection, IP address, MTU, ACLs, NAT and various other parameters.
show ip interface brief Configuration Summary of interface: IP address, status of physical and logical link,
show protocols Configuration Displays the link status and IP address of this.
show ip protocols Routing Protocols Presents all relevant information to routing protocols in use: configuration parameters, routes announced, last update.
show ip route Routing Table Displays the routing table. Shows the network in what was learned (dynamic or static) [administrative distance / metric] and IP and the interface on which this route was learned
show ip EIGRP interfaces <AS> EIGRP Displays the interfaces in which EIGRP is running. You can not advertise routes on certain interfaces through the passive-interface command.
show ip EIGRP neighbors EIGRP Displays EIGRP neighbors running and data as the neighbor’s IP, interface, Holdtime, Uptime, SRTT (Smooth Round Trip Time), RTO (Retransmission Time Out), Q Cnt (Queue), Seq Num.
show ip EIGRP topology EIGRP Displays the network topology. States: state of the route (passive /active), (feasible distance / advertised distance).
show ip EIGRP traffic EIGRP Displays statistics for EIGRP packets.
show frame-relay LMI Frame-Relay Displays statistics on the LMI (Link Management Interface), the pattern of signaling between the local device and the frame-relayswitch.
show frame-relay map Frame-Relay Displays the IP mapping -> DLCI (Data Link Connection Identifier), usually created by using the frame map, or through dynamic translation by Inverse ARP.
show frame-relay pvc Frame-Relay Displays statistics for each frame-relay circuit and other data such as interfaces and DLCI, traffic, DE bit (Discard Eligibility), FECN (Forward-Explicit Congestion Notification), BECN (Backward-Explicit Congestion Notification).
show CDP CDP Presents relevant information to timers: the sending of updates, and holdtime of CDP version announced.
show CDP neighbors CDP Presents information regarding neighbors such as: Device ID (Hostname), Local Intrf (Interface that the router is receiving packets CDP), HoldTime, Capability (Router / Switch …), platform (Model), Port ID (remote port).
show CDP neighbors detail CDP Presents the same information as the previous one, including: IP host and the other details of IOS.
Show CDP entry * CDP Same command as before, changing that you can select only one device by its ID.

OUTPUTS:

R_Caxias#show interfaces
FastEthernet0/0 is up, line protocol is up (connected)
Hardware is Lance, address is 0001.4211.2e01 (bia 0001.4211.2e01)
Internet address is 192.168.30.1/24
MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec, rely 255/255, load 1/255
Encapsulation ARPA, loopback not set
ARP type: ARPA, ARP Timeout 04:00:00,
Last input 00:00:08, output 00:00:05, output hang never
Last clearing of "show interface" counters never
Queueing strategy: fifo
Output queue :0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 124 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
0 input packets with dribble condition detected
789 packets output, 56808 bytes, 0 underruns
0 output errors, 0 collisions, 1 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier
0 output buffer failures, 0 output buffers swapped out

R_Caxias#show ip interface
FastEthernet0/0 is up, line protocol is up (connected)
Internet address is 192.168.30.1/24
Broadcast address is 255.255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound access list is not set
Proxy ARP is enabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP mask replies are never sent
IP fast switching is disabled
IP fast switching on the same interface is disabled
IP Flow switching is disabled
IP Fast switching turbo vector
IP multicast fast switching is disabled
IP multicast distributed fast switching is disabled
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
WCCP Redirect outbound is disabled
WCCP Redirect exclude is disabled
BGP Policy Mapping is disabled
255255255255 R_Caxias#show ip interface
FastEthernet0/0 is up, line protocol is up (connected)
Internet address is 192.168.30.1/24
Broadcast address is 255.255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound access list is not set
Proxy ARP is enabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP mask replies are never sent
IP fast switching is disabled
IP fast switching on the same interface is disabled
IP Flow switching is disabled
IP Fast switching turbo vector
IP multicast fast switching is disabled
IP multicast distributed fast switching is disabled
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
WCCP Redirect outbound is disabled
WCCP Redirect exclude is disabled
BGP Policy Mapping is disabled

R_Caxias#show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 192.168.30.1 YES manual up up
FastEthernet0/1 unassigned YES manual administratively down down
Serial0/0 unassigned YES manual up up
Serial0/0.201 172.16.2.2 YES manual up up
Serial0/1 unassigned YES manual administratively down down
192.168.30.1 R_Caxias#show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 192.168.30.1 YES manual up up
FastEthernet0/1 unassigned YES manual administratively down down
Serial0/0 unassigned YES manual up up
Serial0/0.201 172.16.2.2 YES manual up up
Serial0/1 unassigned YES manual administratively down down

R_Caxias#show protocols
Global values:
Internet Protocol routing is enabled
FastEthernet0/0 is up, line protocol is up
Internet address is 192.168.30.1/24
FastEthernet0/1 is administratively down, line protocol is down
Serial0/0 is up, line protocol is up
Serial0/0.201 is up, line protocol is up
Internet address is 172.16.2.2/30
Serial0/1 is administratively down, line protocol is down

R_Caxias#show ip protocols
Routing Protocol is "eigrp 10 "
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Default networks flagged in outgoing updates
Default networks accepted from incoming updates
EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
EIGRP maximum hopcount 100
EIGRP maximum metric variance 1
Redistributing: eigrp 10
Automatic network summarization is not in effect
Maximum path: 4
Routing for Networks:
192.168.30.0
172.16.0.0
Routing Information Sources:
Gateway Distance Last Update
172.16.2.1 90 10
Distance: internal 90 external 170


R_Caxias#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 172.16.2.1 to network 0.0.0.0

172.16.0.0/30 is subnetted, 3 subnets
D 172.16.1.0 [90/46738176] via 172.16.2.1, 00:29:06, Serial0/0.201
C 172.16.2.0 is directly connected, Serial0/0.201
D 172.16.3.0 [90/46738176] via 172.16.2.1, 00:29:06, Serial0/0.201
D 192.168.20.0/24 [90/46740736] via 172.16.2.1, 00:29:06, Serial0/0.201
C 192.168.30.0/24 is directly connected, FastEthernet0/0
D 192.168.40.0/24 [90/46740736] via 172.16.2.1, 00:29:06, Serial0/0.201
D*EX 0.0.0.0/0 [170/46738176] via 172.16.2.1, 00:29:06, Serial0/0.201


R_Caxias#show ip eigrp interfaces
IP-EIGRP interfaces for process 10

Xmit Queue Mean Pacing Time Multicast Pending
Interface Peers Un/Reliable SRTT Un/Reliable Flow Timer Routes
Fa0/0 0 0/0 1236 0/10 0 0
Ser 1 0/0 1236 0/10 0 0
R_Caxias#show ip eigrp interfaces ?
<1-65535> AS Number


R_Matriz#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.3.2 Ser 14 01:01:00 40 1000 0 11
1 172.16.1.2 Ser 11 01:01:00 40 1000 0 11
2 172.16.2.2 Ser 14 01:01:00 40 1000 0 11
172.16.3.2 R_Matriz#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.3.2 Ser 14 01:01:00 40 1000 0 11
1 172.16.1.2 Ser 11 01:01:00 40 1000 0 11
2 172.16.2.2 Ser 14 01:01:00 40 1000 0 11
01:01:00 R_Matriz#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.3.2 Ser 14 01:01:00 40 1000 0 11
1 172.16.1.2 Ser 11 01:01:00 40 1000 0 11
2 172.16.2.2 Ser 14 01:01:00 40 1000 0 11
172.16.1.2 R_Matriz#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.3.2 Ser 14 01:01:00 40 1000 0 11
1 172.16.1.2 Ser 11 01:01:00 40 1000 0 11
2 172.16.2.2 Ser 14 01:01:00 40 1000 0 11
01:01:00 R_Matriz#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.3.2 Ser 14 01:01:00 40 1000 0 11
1 172.16.1.2 Ser 11 01:01:00 40 1000 0 11
2 172.16.2.2 Ser 14 01:01:00 40 1000 0 11
172.16.2.2 R_Matriz#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.3.2 Ser 14 01:01:00 40 1000 0 11
1 172.16.1.2 Ser 11 01:01:00 40 1000 0 11
2 172.16.2.2 Ser 14 01:01:00 40 1000 0 11
01:01:00 R_Matriz#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 172.16.3.2 Ser 14 01:01:00 40 1000 0 11
1 172.16.1.2 Ser 11 01:01:00 40 1000 0 11
2 172.16.2.2 Ser 14 01:01:00 40 1000 0 11

R_Caxias#show ip eigrp topology
IP-EIGRP Topology Table for AS 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
r - Reply status

P 192.168.30.0/24, 1 successors, FD is 28160
via Connected, FastEthernet0/0
P 172.16.2.0/30, 1 successors, FD is 46226176
via Connected, Serial0/0.201
P 172.16.1.0/30, 1 successors, FD is 46738176
via 172.16.2.1 (46738176/46226176), Serial0/0.201
P 172.16.3.0/30, 1 successors, FD is 46738176
via 172.16.2.1 (46738176/46226176), Serial0/0.201
P 0.0.0.0/0, 1 successors, FD is 46738176
via 172.16.2.1 (46738176/2169856), Serial0/0.201
P 192.168.20.0/24, 1 successors, FD is 46740736
via 172.16.2.1 (46740736/46228736), Serial0/0.201
P 192.168.40.0/24, 1 successors, FD is 46740736
via 172.16.2.1 (46740736/46228736), Serial0/0.201


R_Caxias#show ip eigrp traffic
IP-EIGRP Traffic Statistics for process 10
Hellos sent/received: 882/873
Updates sent/received: 6/4
Queries sent/received: 0/0
Replies sent/received: 0/0
Acks sent/received: 1/4
Input queue high water mark 1, 0 drops
SIA-Queries sent/received: 0/0
SIA-Replies sent/received: 0/0


R_Caxias#show frame-relay lmi
LMI Statistics for interface Serial0/0 (Frame Relay DTE) LMI TYPE = CISCO
Invalid Unnumbered info 0 Invalid Prot Disc 0
Invalid dummy Call Ref 0 Invalid Msg Type 0
Invalid Status Message 0 Invalid Lock Shift 0
Invalid Information ID 0 Invalid Report IE Len 0
Invalid Report Request 0 Invalid Keep IE Len 0
Num Status Enq. Sent 549 Num Status msgs Rcvd 549
Num Update Status Rcvd 0 Num Status Timeouts 16

LMI Statistics for interface Serial0/0.201 (Frame Relay DTE) LMI TYPE = CISCO
Invalid Unnumbered info 0 Invalid Prot Disc 0
Invalid dummy Call Ref 0 Invalid Msg Type 0
Invalid Status Message 0 Invalid Lock Shift 0
Invalid Information ID 0 Invalid Report IE Len 0
Invalid Report Request 0 Invalid Keep IE Len 0
Num Status Enq. Sent 0 Num Status msgs Rcvd 0
Num Update Status Rcvd 0 Num Status Timeouts 16


R_Matriz#show frame-relay map
Serial0/0.100 (up): point-to-point dlci, dlci 100, broadcast, status defined, active
Serial0/0.200 (up): point-to-point dlci, dlci 200, broadcast, status defined, active
Serial0/0.300 (up): point-to-point dlci, dlci 300, broadcast, status defined, active

R_Matriz#show frame-relay pvc
PVC Statistics for interface Serial0/0 (Frame Relay DTE)
DLCI = 100, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0.100

input pkts 14055 output pkts 32795 in bytes 1096228
out bytes 6216155 dropped pkts 0 in FECN pkts 0
in BECN pkts 0 out FECN pkts 0 out BECN pkts 0
in DE pkts 0 out DE pkts 0
out bcast pkts 32795 out bcast bytes 6216155

DLCI = 200, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0.200

input pkts 14055 output pkts 32795 in bytes 1096228
out bytes 6216155 dropped pkts 0 in FECN pkts 0
in BECN pkts 0 out FECN pkts 0 out BECN pkts 0
in DE pkts 0 out DE pkts 0
out bcast pkts 32795 out bcast bytes 6216155

DLCI = 300, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0.300

input pkts 14055 output pkts 32795 in bytes 1096228
out bytes 6216155 dropped pkts 0 in FECN pkts 0
in BECN pkts 0 out FECN pkts 0 out BECN pkts 0
in DE pkts 0 out DE pkts 0
out bcast pkts 32795 out bcast bytes 6216155

R_Matriz#show frame-relay pvc ?
<16-1022> DLCI
interface show frame relay information on one interface

R_Matriz#show cdp
Global CDP information:
Sending CDP packets every 60 seconds
Sending a holdtime value of 180 seconds
Sending CDPv2 advertisements is enabled
R_Matriz#show cdp ?
entry Information for specific neighbor entry
interface CDP interface status and configuration
neighbors CDP neighbor entries

R_Matriz#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID Local Intrfce Holdtme Capability Platform Port ID
R_Embratel Ser 0/1 180 R C2600 Ser 0/0

R_Matriz#show cdp neighbors detail || show cdp entry *
Device ID: R_Embratel
Entry address(es):
IP address : 201.0.0.1
Platform: cisco C2600, Capabilities: Router
Interface: Serial0/1, Port ID (outgoing port): Serial0/0
Holdtime: 180

Version :
Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-IM), Version 12.2(28), RELEASE SOFTWARE (fc5)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2005 by cisco Systems, Inc.
Compiled Wed 27-Apr-04 19:01 by miwang

advertisement version: 2
Duplex: full

References:

– Filippeti, M. – “CCNA 4.1 – Complete Study Guide, Visual Books/2008.

– Cisco NetAcademy, Academy Connection. “Cisco Study Material official.” <http://cisco.netacad.net>. Acesso em: 27/02/2008.

Laboratório Frame-Relay COMPLETO!Frame-Relay Lab COMPLETE!

Olá Pessoal,

É com imenso prazer que estou publicando este laboratório completo, desenvolvido a contento incluindo os arquivos txt de configuração de cada um dos routers e switch Frame-Relay e o arquivo do Packet Tracer.

Prosseguindo.

Este laboratório é composto de uma matriz que provê internet para as outras filiais conectadas cada uma por um link ponto-a-ponto a esta, como apresentado na figura abaixo:

Topologia do Laboratório Completo de Frame-Relay.
Topologia do Laboratório Completo de Frame-Relay.

Download do Laboratório Completo de Frame-Relay

Download do Laboratório de Frame-Relay utilizando protocolo de Roteamento OSPF NEW


Os artefatos implementados neste laboratório:

  • Criação de nuvem Frame-Relay possibilitando um circuito virtual na camada de enlace.
  • Utiliza o protocolo EIGRP com redistribuição da rota default possibilitando uma comunicação completa de toda a malha.
  • Utiliza NAT com Overload (PAT) possibilitando o acesso a ‘Internet’.

Os seguintes artefatos poderiam ter sido implementados a mais para ilustrar um cenário mais real e organizacional:

  • Serviço DHCP na Matriz para prover aos hosts (PCs) IPs alocados dinâmicamente.
  • Serviço DNS na Matriz provendo tradução dos nomes.

Itens a desfrutar neste laboratório:

  • Como o Frame-relay encapsula os quadros (frames) e entender o papel da nuvem e os diversos componentes.
  • Verificar a aprendizagem de rotas do EIGRP através dos diversos comandos show disponíveis.
  • Verificar as adjacências utilizando o protocolo CDP (Cisco Discovery Protocol).
  • Verificar as configurações para cada um dos equipamentos (Switch Frame-Relay, Roteador na Matriz e Filiais).
  • Absorver os conceitos passados neste laboratório.
  • E não esqueça, a criatividade é o limite. Modifique, pergunte e deixe-me saber o que achou deste laboratório.

Pessoal, acredito que é isso. Espero que aproveitem o laboratório, pois eu estou.

Como meu objetivo é de obter o CCNA, este laboratório engloba diversos conceitos interessantes num case aproximado do mundo real.

Um abração,

Maurício.Hello Guys,

It is with great pleasure that I am posting this complete lab, developed to the satisfaction txt files including the configuration of each router and switch, Frame Relay and Packet Tracer file.

Continuing.

This laboratory consists of a matrix that provides internet to the other branches each connected by a link point-to-point to this, as in figure below:

Topologia do Laboratório Completo de Frame-Relay.

Topology of the Laboratory of Full-Frame Relay.

Download Full of Lab-Frame Relay

Download Laboratory of Frame-Relay OSPF Routing Protocol using NEW


The artifacts implemented in this laboratory:

  • Creating Frame-Relay cloud allowing a virtual circuit in the link layer.
  • Uses the protocol to EIGRP redistribution of enabling a default route complete communication throughout the mesh.
  • Used with NAT Overload (PAT) allowing access to ‘Internet’.

The following artifacts could have been implemented to further illustrate a more realistic scenario and organizational:

  • DHCP service to provide to the matrix hosts (PCs) assigned IPs dynamically.
  • DNS service in the matrix providing translation of names.

Items to enjoy in this laboratory:

  • How the Frame-relay encapsulates the frames (frames) and understand the role of cloud and the various components.
  • Check the learning of the EIGRP routes through the various show commands available.
  • Check the surroundings using the protocol CDP (Cisco Discovery Protocol).
  • Check the settings for each of the equipment (Switch, Frame Relay, Routing Matrix and the Subsidiaries).
  • Absorb the concepts after this lab.
  • And do not forget, creativity is the limit. Modify, ask and let me know what you think of this laboratory.

I personally believe that is. I hope you enjoy the lab, because I am.

As my goal is to get the CCNA, this lab includes various interesting concepts in a case about the real world.

A Abrasive,

Maurício.

VLSM – Referência de estudo

Olá Pessoal,

Hoje, descobri um ótimo website para treinar o raciocínio rápido à respeito das VLSMs (Variable-lenght subnet masks). Ele apresenta diversas questões sobre endereçamento IP e máscaravas variadas, você pensa a resposta e clica para mostrar a resolução.

Vale a pena conferir.

Segue o link:

http://www.subnettingquestions.com/

Abração e ótimo carnaval!

Maurício.

Laboratório VLAN TrunkingLab VLAN Trunking

Olá Pessoal,
Fiz um laboratório de switching um tanto básico, mas bem interessante para identificar a diferença entre links de acesso (switchport mode access) entre VLANs e ‘entroncamentos’ ou trunking (switchport mode trunk). Abaixo, segue a topologia inicial baseada nos switches Cisco Catalyst 2950.

Topologia inicial do Laboratorio Trunking
Topologia inicial do Laboratorio Trunking

Este Lab mostra a diferença entre utilizar 3 links de acesso para passar dados de 3 VLANS entre diferentes switches e utilizar apenas uma porta trunk para isso. O Lab poderia ser mais elaborado para depois se colocar EtherChannels e compartilhar a banda destes 3 links, mas o que possui já é interessante.

Este Lab foi extraído de um ‘pacotão’ com diversos laboratórios: Link

Segue o link para a atividade descrita contendo as resoluções escritas e do Packettracer:  VLAN Trunking Lab

Adicionado Roteamento entre Vlans e VTP. Vlan Trunking + VTP + Roteamento entre VLans Lab

Abraços,

E sucesso.

Maurício.Hello Guys,
I made a laboratory of switching a bit basic, but very interesting to identify the difference between links of access (switchport mode access) between VLANs and ‘junctions’ or trunking (switchport mode trunk). Below, follows the initial topology based switchesCisco Catalyst 2950.

Topologia inicial do Laboratorio Trunking

Initial topology of the Laboratory Trunking

This lab shows the difference between using 3 links for access to move data between different VLANs, 3 switches and use only atrunk port for that. The Lab could be more prepared to put EtherChannels and then share the bandwidth of these 3 links, but what has is interesting.

This Lab was extracted from a ‘package’ with different laboratories: Link

Follow the link to the activity described containing the resolutions and the written Packettracer: VLAN Trunking Lab

Added routing between VLANs and VTP. VTP VLAN Trunking + + Routing between VLANs Lab

Abraços,

And success.

Maurício.

Resumo Redes Sem-fio : Wireless (Wi-fi) NetworksSummary of Wireless (Wi-Fi) Networks

Olá Pessoal,
Segue um resumo feito por mim a respeito de Redes sem-fio (Wireless Networks) com o objetivo da Certificação.

Redes sem-fio

Básico

  • Como o padrão Ethernet (802.3) o Wireless (802.11) opera na camada 2 do modelo OSI.
  • Utilizam o algoritmo CSMA/CA (Carrier Sense Multiple Access / Colision Avoidance). Ou seja, ao contrário do modelo Ethernet que utiliza o CSMA/CD (Detection) o algoritmo das Wireless LANs tenta evitar a colisão de dados trabalhando preferencialmente em Half-duplex.

Tecnologias sem-fio

  • Infravermelho, banda estreita, banda larga, satélite, WIMAX.
  • No escopo do CCNA serão abordadas as Spread Spectrum Wireless LANs, as redes Wi-fi (Wireless Fidelity). Abaixo são apresentados os padrões que existem hoje e suas características.

Padroes 802.11
Padroes 802.11

Modos de Operação

  • Ad-hoc: dispositivo envia mensagens diretamente para o destinatário sem intermédio de um AP (Access-point).
  • Infraestrutura: dispositivo necessita do intermédio do AP para o destinatário receber a mensagem. Este modo suporta ainda dois: BSS (Basic Service Set) e ESS (Extended Service Set).
    • BSS: Utiliza apenas um ponto de acesso.
    • ESS: Utiliza dois ou mais pontos de acesso permitindo o roaming dinâmico entre a interseção das células de rádio (ex. rede celular). O ideal é de as células possuir um overlap (sobreposição) de 10 a 15%.
Service Sets
Service Sets

Transmissão sem-fio

Órgãos de cada país regulam as freqüências disponíveis para uso. Algumas são liberadas de licença, mas outras não. Abaixo são apresentadas as freqüências relevantes liberadas, nome e exemplos de dispositivos, respectivamente.

Freqüências
Freqüências

Interferência

Para se medir a interferência é utilizado a medida SNR (Signal-to-Noise ratio).
No escopo do CCNA, os seguintes artefatos causam interferência de sinal:

  • Ondas de rádio na mesma freqüência.
  • Barreiras físicas, especialmente se possuir uma grande quantidade de metal que absorve parte do sinal.

Cobertura e Velocidade

A área de cobertura de um determinado AP, no escopo CCNA, depende de fatores como:

  • Potência do sinal;
  • Freqüência utilizada;
  • Interferência;
  • Proximidade a determinados materiais (ex: metal).

A força do sinal é proporcional a velocidade de transmissão de dados, ou seja, quanto mais forte (ex: mais próximo do AP) maior velocidade de transmissão. Para se aumentar a área de cobertura pode-se: utilizar antenas especiais, aumentar o número de antenas, aumentar o ganho na antena e aumentar a potência de transmissão.Olá Pessoal,
Segue um resumo feito por mim a respeito de Redes sem-fio (Wireless Networks) com o objetivo da Certificação.

Redes sem-fio

Básico

  • Como o padrão Ethernet (802.3) o Wireless (802.11) opera na camada 2 do modelo OSI.
  • Utilizam o algoritmo CSMA/CA (Carrier Sense Multiple Access / Colision Avoidance). Ou seja, ao contrário do modelo Ethernet que utiliza o CSMA/CD (Detection) o algoritmo das Wireless LANs tenta evitar a colisão de dados trabalhando preferencialmente em Half-duplex.

Tecnologias sem-fio

  • Infravermelho, banda estreita, banda larga, satélite, WIMAX.
  • No escopo do CCNA serão abordadas as Spread Spectrum Wireless LANs, as redes Wi-fi (Wireless Fidelity). Abaixo são apresentados os padrões que existem hoje e suas características.

Padroes 802.11
Padroes 802.11

Modos de Operação

  • Ad-hoc: dispositivo envia mensagens diretamente para o destinatário sem intermédio de um AP (Access-point).
  • Infraestrutura: dispositivo necessita do intermédio do AP para o destinatário receber a mensagem. Este modo suporta ainda dois: BSS (Basic Service Set) e ESS (Extended Service Set).
    • BSS: Utiliza apenas um ponto de acesso.
    • ESS: Utiliza dois ou mais pontos de acesso permitindo o roaming dinâmico entre a interseção das células de rádio (ex. rede celular). O ideal é de as células possuir um overlap (sobreposição) de 10 a 15%.
Service Sets
Service Sets

Transmissão sem-fio

Órgãos de cada país regulam as freqüências disponíveis para uso. Algumas são liberadas de licença, mas outras não. Abaixo são apresentadas as freqüências relevantes liberadas, nome e exemplos de dispositivos, respectivamente.

Freqüências
Freqüências

Interferência

Para se medir a interferência é utilizado a medida SNR (Signal-to-Noise ratio).
No escopo do CCNA, os seguintes artefatos causam interferência de sinal:

  • Ondas de rádio na mesma freqüência.
  • Barreiras físicas, especialmente se possuir uma grande quantidade de metal que absorve parte do sinal.

Cobertura e Velocidade

A área de cobertura de um determinado AP, no escopo CCNA, depende de fatores como:

  • Potência do sinal;
  • Freqüência utilizada;
  • Interferência;
  • Proximidade a determinados materiais (ex: metal).

A força do sinal é proporcional a velocidade de transmissão de dados, ou seja, quanto mais forte (ex: mais próximo do AP) maior velocidade de transmissão. Para se aumentar a área de cobertura pode-se: utilizar antenas especiais, aumentar o número de antenas, aumentar o ganho na antena e aumentar a potência de transmissão.